Self-referencing: A Scalable Side-Channel Approach for Hardware Trojan Detection
نویسندگان
چکیده
Malicious modification of integrated circuits (ICs) in untrusted foundry, referred to as “Hardware Trojan”, has emerged as a serious security threat. While side-channel analysis has been reported as an effective approach to detect hardware Trojans, increasing process variations in nanoscale technologies pose a major challenge, since process noise can easily mask the Trojan effect on a measured side-channel parameter, such as supply current. Besides, existing side-channel approaches suffer from reduced Trojan detection sensitivity with increasing design size. In this paper, we propose a novel scalable side-channel approach, named self-referencing, along with associated vector generation algorithm to improve the Hardware Trojan detection sensitivity under large process variations. It compares transient current signature of one region of an IC with that of another, thereby nullifying the effect of process noise by exploiting spatial correlation across regions in terms of process variations. To amplify the Trojan effect on supply current, we propose a region-based vector generation approach, which divides a circuit-undertest (CUT) into several regions and for each region, finds the test vectors which induce maximum activity in that region, while minimizing the activity in other regions. We show that the proposed side-channel approach is scalable with respect to both amount of process variations and design size. The approach is validated with both simulation and measurement results using an FPGA-based test setup for large designs including a 32-bit DLX processor core (∼ 10 transistors). Results shows that our approach can find ultra-small (<0.01% area) Trojans under large process variations of up to ± 20% shift in transistor threshold voltage.
منابع مشابه
Hardwar Trojan classification and implementation and offer a new detection approach
A hardware attack that enables the attacker to alter the main circuit with malicious hardware during either design or the fabrication process is studied and analyzed. This attack, known as the hardware Trojan, has different objectives such as destroying hardware, changing circuit characteristics or extracting sensitive information. So hardware Trojan detection and hardware security are critical...
متن کاملMERO: A Statistical Approach for Hardware Trojan Detection
In order to ensure trusted in–field operation of integrated circuits, it is important to develop efficient low–cost techniques to detect malicious tampering (also referred to as Hardware Trojan) that causes undesired change in functional behavior. Conventional post–manufacturing testing, test generation algorithms and test coverage metrics cannot be readily extended to hardware Trojan detection...
متن کاملSecurity-aware register placement to hinder malicious hardware updating and improve Trojan detectability
Nowadays, bulk of the designers prefer to outsource some parts of their design and fabrication process to the third-part companies due to the reliability problems, manufacturing cost and time-to-market limitations. In this situation, there are a lot of opportunities for malicious alterations by the off-shore companies. In this paper, we proposed a new placement algorithm that hinders the hardwa...
متن کاملA Multi-Parameter Functional Side Channel Analysis Method for Hardware Trojan Detection in Untrusted FPGA Bitstreams
vi
متن کاملThe First Thorough Side-Channel Hardware Trojan
Hardware Trojans have gained high attention in academia, industry and by government agencies. The effective detection mechanisms and countermeasures against such malicious designs are only possible when there is a deep understanding of how hardware Trojans can be built in practice. In this work, we present a mechanism which shows how easily a stealthy hardware Trojan can be inserted in a provab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010